
MANIPULATION OF AUDIO IN THE WAVELET
DOMAIN PROCESSING 

A WAVELET STREAM USING PD

Institut für Elektronische Musik (IEM)

Graz, 2006

Raúl Díaz Poblete 



2



ABSTRACT

El objetivo de este trabajo es investigar las posibilidades
del uso en tiempo real de la transformada wavelet discreta con
Pure Data para el análisis / resíntesis de señales de audio.  

Con  esta  intención  he  realizado  un  acercamiento  con
Pure Data a un nuevo tipo de síntesis granular basada en la
transformada wavelet: la resíntesis de una señal de audio a
partir de sus coeficientes wavelet mediante una síntesis aditiva
de  flujos  de  wavelets  (una  sucesión  temporal  de  'gránulos
wavelet'  para  cada  escala  o  banda  de  frecuencia  que  son
escalados  por  un  factor  de  amplitud  obtenido  de  los
coeficientes del análisis wavelet).

También  he  desarrollado  otras  aplicaciones  de  audio
mediante  la  manipulación  de  los  coeficientes  wavelet  para
estudiar  las  posibilidades  de  pitch  shift,  time  stretch,
ecualización y randomización de audio.
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ABSTRACT

The aim of this work is to research the possibilities of use
the discrete wavelet transform in real-time with Pure Data for
analysis / resynthesis of audio signals.

With  this  intention  I  approached to  a  new  sort  of
granular  synthesis  with  Pure  Data  based  on  wavelet
transform:  resynthesis  of  an  audio  signal  from  its  wavelet
coefficients  by  means  of  an  additive  synthesis  of  wavelet
streams (a temporal succession of 'wavelets grains' for each
scale or frequency level which are enveloped by an amplitude
factor obtained from wavelet analysis coefficients). 

Another  audio  applications  by  means  of  wavelet
coefficients  manipulation have been developed to  study the
possibilities of pitch shift, time stretch, equalization and audio
randomization.
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ABSTRACT

Ziel  der  Arbeit  ist  die  Möglichkeiten des Einsatzes  der
diskreten  Wavelet  Transformation  in  Echtzeit  mittels  der
grafischen Programmiersprache Pure Data zu erforschen, um
eine  Analyse,  Transformation  und  Resynthesis  von
Audiosignalen zu realisieren.

Dazu wird eine neue Art  eines  granularen Synthesizer
mit  Pure  Data  mit  Wavlets  als  Samplebasis  entwickelt.  Die
Resynthese  des  Audiosignals  von  ihren  Waveletkoeffizienten
mittels  additive  wavelet  Streams  (zeitliche  Abfolge  von
'wavelets grains' für jeden Frequenz Level errechnet aus den
wavlet-Koeffizienten und damit deren Amplitudenskalierung).

Als  Beispielsanwendungen  der  Manipulation  der
Waveletkoeffizienten wurde studien über die Möglichkeit von
Tonhöhenveränderungen,  zeitlicher  Dehnung,  Bandfilterung
und  Verschmierung  von  Zeitlichen  Abfolgen  der  Wavlets
realisiert.
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Chapter 1

Wavelet Theoretical Background

In this chapter I will try to give a theoretical background
about  time-frequency  representations  focused  on  wavelet
transform, which is the base of this work. This chapter doesn't
want to be a deep mathematical explanation, instead of this I
will  try to go into wavelets from an engineer point of  view,
more focused on signal processing. More mathematical details
can be consulted in the related bibliography.

1.1. Time-Frequency Representations

Traditionally, signals of any sort have been represented
in a temporal domain or in a frequencial domain. In the time
domain, we can look at an audio signal as magnitudes sampled
at given times. In  the frequency domain, an audio signal is
represented as magnitudes of sinusoids at given frequencies.

But for audio analysis, it is quite interesting to have an
overview  of  an  audio  signal  over  both  components,  as  in
classical  music  scores  (temporal  view  of  notes  of  different
pitch).

A  time-frequency  representation  is  a  view  of  a  signal
represented over both time and frequency. 

 

1.1.1. Short Time Fourier Transform

The  Fourier  Transform  is  a  classical  tool  in  signal
processing which   breaks  down a  signal  into  its  constituent
sinusoids  of  different  frequencies.  Thus,  Fourier  analysis
transform our signal view from time to frequency domain.

But in Fourier analysis we can't know when a particular
event took place because  in transforming to the frequency
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domain,  time information  is  lost.  If  the  signal  don't  change
much over time (stationary signals) this drawback isn’t very
important,  but most  common signals  contain  numerous  non
stationary or transitory characteristic and we lost an important
information.

The Short-Time Fourier Transform (STFT) was created to
correct this deficiency in Fourier analysis, adapting the Fourier
Transform to analyze windowed sections of  the signal  along
the  time.  Thus,  the  STFT  maps  the  signal  into  a  two-
dimensional  function  of  time  and  frequency  in  a  sort  of
compromise between the time- and frequency-based views of
a signal. 

Nevertheless, the STFT has a fixed resolution: we obtain
a  information  with  limited  precision,  and  that  precision  is
determined by the size  of  the window.  In this  way,  a wide
window  gives  better  frequency  resolution   but  poor  time
resolution, while a narrower window gives good time resolution
but  poor  frequency resolution.  These  are  called  narrowband
and wideband transforms. 

 

1.1.2. Wavelet Transform

The Wavelet Transform gives a solution to the problem of
fixed resolution in STFT: multirresolution analysis. The Wavelet
Transform uses  different  window sizes  for  different  regions:

figure 1
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long time intervals where we want more precise low frequency
information,  and  shorter  intervals  where  we  want  high
frequency information.

We can take a look at this differences in the next figure:

As well as Fourier Transform breaks down a signal into
its constituent sinusoids, Wavelet Transform is the breaking up
of  a  signal  into  shifted  and  scaled  versions  of  the  original
wavelet (mother wavelet).

This  mother  wavelet  is  an  oscillating  waveform  of
effectively limited duration that has an average value of zero.
While Fourier  analysis uses sinusoids which are smooth and
predictable, wavelets tend to be irregular and asymmetric. We
can look at  some examples of  wavelet  mothers  of  different
types in the next figure.

figure 2
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When we make a Fourier analysis we obtain a number of
Fourier coefficients, which when multiplied by a sinusoid of its
corresponding  frequency,  yield  the  constituent  sinusoidal
components of the original signal. In the same way, the result
of the Wavelet analysis are many wavelet coefficients, which
are  a  function  of  frequency  and  time.  Multiplying  each
coefficient  by  the  appropriately  scaled  and  shifted  wavelet
yields the constituent wavelets of the original signal. 

Scaling  a  wavelet  simply  means  stretching  (or
compressing)  it,  while  shifting  a  wavelet  simply  means
delaying (or hastening) its onset. We can see some scaled and
shifted wavelets in the next figure.

figure 3
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Until now, we was talking about wavelet transform in a
continuous  time,  that  is  the  Continuous  Wavelet  Transform
(CWT). In short, this CWT is the sum over all time of the signal
multiplied  by  scaled,  shifted  versions  of  the  wavelet.  This
process  produces  wavelet  coefficients  that  are  a  function of
scale and position. We will talk about the wavelet transform in
a discrete time in the next section.

To  understand  how  the  continuous  wavelet  transform
proceed, we are going to summarize this process in five easy
steps:

figure 4
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1. Take a wavelet and compare it to a section at the start
of the original signal.

2. Calculate  a  coefficient  C,  that  represents  how closely
correlated the wavelet is with this section of the signal.
The higher the coefficient is, the more the similarity. Of
course,  the  results  will  depend  on  the  shape  of  the
wavelet you choose.

3. Shift the wavelet to the right and repeat steps 1 and 2
until you’ve covered the whole signal.

4. Scale (stretch) the wavelet and repeat steps 1 through
3.

5. Repeat steps 1 through 4 for all scales (frequency).

When  we  are  done,  we  will  have  all  the  coefficients
produced at different scales by different sections of the signal.
We can take a view of the original  signal  by means of this
matrix  of  coefficients:  make  a  plot  on  which  the  x-axis
represents  position  along  the  signal  (time),  the  y-axis
represents scale (frequency), and the color at each  x-y  point
represents the magnitude of the wavelet coefficient C. We can
look this representation in the next graphic.
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This representation is not easy to understand but it is
especially useful to look at discontinuities in the signal  (and
recursivity or repetitions of patterns), and of course to look at
the spectrum of the signal along the time.

1.2. DWT: Discrete Wavelet Transform

After approaching the wavelet transform for a continuous
time in general lines, we are going to get into more details of
how wavelet transform act in a discrete time. 

Due to calculating wavelet coefficients at every possible
scale is a fair amount of work and it generates an awful lot of
data, we need to choose only a subset of scales and positions
at which to make our calculations. For computation efficiency
scales and positions based on powers of two (dyadic scales and
positions) are chosen. Thus we can make a Discrete Wavelet
Transform (DWT). 

A classical and efficient way to implement this scheme
using  filters  is  known  as  two-channel  subband  coder,  a
practical  filtering  algorithm  which  yields  a  Fast  Wavelet
Transform (FWT), a box into which a signal passes, and out of
which wavelet  coefficients  quickly emerge,  equivalent to the
conventional  Fast  Fourier  Transform  (FFT)  in  the  wavelet
domain.

figure 5
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To  understand  this  scheme  we  need  to  talk  about
approximations and details. The approximations correspond to
the low-frequency components of a signal, while the details are
the high-frequency components.  Thus,  we can split  a  signal
into approximation and details by means of a filtering process:

If  we actually  perform this  operation on  a  real  digital
signal, we wind up with twice as much data as we started with.
But  we  may  keep  only  one  point  out  of  two  in  both
approximations  and  details  coefficients  to  get  the  complete
information. In this way, if  we apply a  downsampling by 2
after the filtering process to obtain the same amount of data
than the original signal. Due to this decomposition process the

input signal must be a multiple of 2n where n is the number of
levels. 

figure 6
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This  decomposition  process  can  be  iterated,  with
successive approximations being decomposed in turn, so that
one  signal  is  broken  down  into  many  lower  resolution
components.  This  tree  is  known  as  the  filter  bank  or  the
wavelet decomposition tree:

figure 7
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figure 8: 3 levels decomposition filter bank
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For example, if we have an input signal with 32 samples,
frequency  range  0  to  fn and  4  levels  of  decomposition,  5
outputs (4 details and 1 approximation) are produced: 

Level Samples Frequency

1 16 (D1) fn/2 to fn 

2 8 (D2) fn/4 to fn/2 

3 4 (D3) fn/8 to fn/4 

4
2 (D4) fn/16 to fn/8 

2 (A4) 0 to fn/16 

And the next figure shows its frequency representation:

This iterative scheme can be continued indefinitely until
we obtain an approximation and detail coefficients of a single
value. In practice, we can select a suitable number of levels
based on the nature of the signal, or on a suitable criterion
such as entropy.

This process of wavelet decomposition or analysis has its
reverse  version,  which  allow  to  assemble  back  the  wavelet
coefficients into the original signal without loss of information.
This  process  is  called  reconstruction,  or  synthesis.  The
mathematical manipulation that effects synthesis is called the

figure 9: Frequency domain representation of DWT coefficients
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Inverse Discrete Wavelet Transform (IDWT).

We  can  implement  the  reconstruction  process  with  a
filter  bank  in  a  reverse  way  we  have  implemented  the
decomposition  process.  While  wavelet  analysis  involves
filtering and downsampling, the wavelet synthesis consists of
upsampling (lengthening a signal component by inserting zeros
between samples) and filtering.
 
  The lowpass and highpass decomposition filters, together
with their associated reconstruction filters, form a system of
what  is  called  quadrature  mirror  filters.  The  choice  of  this
filters  is  crucial  in  achieving  perfect  reconstruction  of  the
original signal. Moreover this choice also determines the shape
of the wavelet we use to perform the analysis. To construct a
wavelet of some practical utility, you seldom start by drawing a
waveform. Instead, it usually makes more sense to design the
appropriate quadrature  mirror  filters,  and then use  them to
create the waveform.
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figure 10: 3 levels reconstruction filter bank
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The  wavelet  mother’s  shape  is  determined  entirely  by
the  coefficients  of  the  reconstruction  filters,  specifically  is
determined  by  the  highpass  filter,  which  also  produces  the
details of the wavelet decomposition.

There  is  an  additional  function  which  is  the  so-called
scaling  function.  The  scaling  function  is  very  similar  to  the
wavelet function. It is determined by the lowpass quadrature
mirror filters, and thus is associated with the approximations of
the wavelet decomposition.

We  can  obtain  a  shape  approximating  the  wavelet
mother  iteratively  upsampling  and  convolving  the  highpass
filter, while iteratively upsampling and convolving the lowpass
filter produces a shape approximating the scaling function.
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figure 11: wavelet analysis and reconstruction scheme
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1.3. Lifting Scheme

The  lifting  scheme  is  a  technique  for  both  designing
wavelets and performing the discrete wavelet transform. While
the DWT applies several filters separately to the same signal,
for the lifting scheme the signal is divided like a zipper and
then, a series of convolution-accumulate operations across the
divided signals is applied. 

Before to go into details of the lifting scheme, we are
going  to  explain  the  simplest  wavelet  transform,  the  Haar
wavelet as example and introduction to lifting scheme.

1.3.1.Haar Transform

Haar  wavelet  split  the  input  signal  into  two  signals:
averages  (related  to  approximation  coefficients)  and
differences  (related  to  detail  coefficients).  If  we  take two
neighboring samples a and b of a sequence, we can replace a
and b by their average s and difference d:

s= a + b
2

d=b? a

If  a and  b are highly correlated, the expected absolute
value of their difference d will be small and can be represented
with fewer bits (even if a = b the difference is simply zero). We
have not lost any information because given  s and  d we can
always recover a and b as:

a=s−d
2

b=s+ d
2

If we have an input signal sj, which has 2j samples sj,k, is
split into two signals: sj-1 with 2j-1 averages s-j-1,k and dj-1 with
2j-1 differences  dj-1,k.  We can think of  the averages  sj-1 as a
coarser  resolution representation of  the signal  sj and of  the
differences  dj-1 as  the  information  needed  to  go  from  the
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coarser  representation  back  to  the  original  signal.  We  can
apply the same transform to the coarser signal  sj-1 itself, and
repeating this porcess iteratively we obtain the averages and
differences of sucesive levels, until obtain the signal s0 on the
very coarsest scale, which a single sample  s0,0, which is the
average of all the samples of the original signal, that is the DC
component or zero frequency of the signal.

The whole Haar transform can be thought of as applying
a N x N matrix (N = 2n) to the signal sn. The cost of computing
the transform  requires O(N) operations, while the cost of the
Fast Fourier Transform is O(N logN).

The main adventage of the lifting scheme is that it can
be  computed  in-place,  without  using  auxiliary  memory
locations, by overwriting the locations that hold  a and  b with
the values of respectively  s and  d. We store  s in the same
location as  a and d in the same location as  b. Therefore that
suggest an implementation in two steps. First we only compute
the difference:

d=b? a

and store it in the location for b. As we now lost the value of b
we next use a and the newly computed difference d to find the
average as:

figure 12: Haar Transform single level step and its inverse

27



s=a+ d
2

A C-like implementation is given by:

b -= a;  a += b/2;

after  which  b contains  the  difference  and  a the  average.
Moreover we can immediately find the inverse without formally
solving a 2 x 2 system: simply run the above code backwards
(change the order and flip the signs.) Assume a contains the
average and b the difference. Then:

a -= b/2;  b += a;

recovers the values a and b in their original memory locations.
This particular scheme of writing a transform is a first, simple
instance of the lifting scheme.
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1.3.2.Lifting Scheme

We can build the Haar transform into the lifting scheme
through the three basic lifting steps:

– Split: We simply split the signal into two disjoint sets
of samples: one group consists of the even indexed
samples  ,  and the other group consists of  the odd
indexed samples  s2j+1.  Each group contains  half  as
many  samples  as  the  original  signal.  The  splitting
into  even  and  odds  is  a  called  the  Lazy  wavelet
transform.

figure 13: Haar Transform of an 8 samples signal (3 decomposition levels)
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– Predict: The even and odd subsets are interspersed.
If  the  signal  has  a  local  correlation  structure,  the
even and odd subsets will  be highly correlated.  In
other words given one of the two sets, it should be
possible  to  predict  the  other  one  with  reasonable
accuracy. We always use the even set to predict the
odd one. Thus, we define an operator P such as:

d j−1=odd j−l? P even j−1

– Update: The update stage ensures that the coarser
signal  has the same average value  as  the  original
signal by defining an operator U such as:

s j−1 =even j−l +U d j−1

A C-like implementation of the Haar Transform into lifting
scheme is given by:

(evenj-1, oddj-1) := Split (sj);

dj-1 = oddj-1 - evenj-1;

sj-1 = evenj-1 + dj-1/2;

Of course, all this steps can be computed in-place: the
even locations can be overwritten with the averages and the
odd ones with the details. We can look at this process in the
next scheme:
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The inverse scheme can be immediately built by running
the process backwards, reversing the order of the operations
and flipping the signs. Again we have three steps:

– Undo  Update:  Given  the  averages  sj and  the
differences  dj   we can recover  the even samples by
simply subtracting the update information:

even j−l =s j−l? U d j−1

– Undo  Predict:  Given  the  even  samples  and  the
differences  dj we  can  recover  the  odd  samples  by
adding the prediction information:

odd j−l =d j−l +P even j−1

– Merge: Now that we have the even and odd samples
we simply have to zipper them together to recover the
original signal. This is call the inverse Lazy wavelet.

The following figure shows this inverse lifting scheme:

figure 14: Lifting scheme 
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The Haar transform uses a predictor which is correct in
case the original signal is a constant. It eliminates zeroth order
correlation.  We  say  that  the  order  of  the  predictor  is  one.
Similarly  the  order  of  the  update  operator  is  one  as  it
preserves the average or zeroth order moment.

But, we can built a predictor and update steps of higher
order. For example, we can built a predictor and update which
are of order two, which means the predictor will be exact in
case the original signal is a linear and the update will preserve
the average and the first moment. In this case, which is call
the  linear  wavelet  transform,  the  difference  and  average
coefficients are given by:

d j−1, l =s j ,2 l+1−
1
2 s j ,2l +s j ,2l+2

s j−1, l =s j ,2l
1
4 d j−1, l−1+d j−1, l

 

In order to build predictors we can use the  subdivision
methods. Subdivision method is a powerful paradigm to build
predictors which allow to design various forms of P function
boxes in wavelet transform. We may think of subdivision as an
inverse wavelet transform with no detail  coefficients. In this
context,  subdivision  is  often  referred  to  as  the  cascade
algorithm.  A given  subdivision  scheme  can  deffine  diferent
ways to compute the detail coefficients.

figure 15: Inverse lifting scheme
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The  simplest  subdivision  scheme  is  interpolating
subdivision. New values at odd locations at the next finer level
are predicted as a function of some set of neighboring even
locations. The old even locations do not change in the process.
The linear interpolating subdivision, or prediction, step inserts
new values inbetween the old values by averaging the two old
neighbors.  Repeating  this  process  leads  in  the  limit  to  a
piecewise linear interpolation of the original data. We then say
that the order of the subdivision scheme is 2.  The order of
polynomial reproduction is important in quantifying the quality
of a subdivision (or prediction) scheme. A wavelet transform
using linear interpolating subdivision is equivalent to the linear
wavelet transform:

Instead  of  thinking  of  interpolating  subdivision  as
averaging  we  can  describe  it  via  the  construction  of  an
interpolating  polynomial  to  build  more  powerful  versions  of
such subdivisions. Instead of using only immediate neighbors
to  build  a  linear  interpolating polynomial,  we can use more
neighbors  on  either  side  to  build  higher  order  interpolating
polynomials.  If  we  use  D  neighbors  on  left  and  right  to
construct a interpolating polynomial, we will say that the order
of  the  subdivision  scheme  is  N=2D  (and  the  interpolating
polynomial has an order N-1). 

We  can  look  at  an  example  of  a  linear  and  cubic
interpolation in the next figure:

figure 16 
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Another  useful  subdivision  methods  like  average-
interpolating subdivision or  B-spline subdivision can be build
into lifting scheme in the same way.

Before to end this section, we are going to show how to
obtain the wavelet mother and scaling function from our lifting
scheme as we obtained it from the decimated filter bank.

Scaling  function  can  be  obtained  by  inserting  a  delta
impulse as average signal into the inverse lifting scheme:

figure 17 
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As well, we can obtain the wavelet mother by inserting a
delta  impulse  as  difference  signal  into  the  inverse  lifting
scheme:

figure 18 

figure 19 
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1.4.DWT in Pure Data: dwt~ external

The purpose of this work is to study the possibility of the
digital wavelet transform in audio analysis / resynthesis with
Pure Data. 

For this purpose I have used an external for PD which
implement the DWT. This external is part of creb PD library
written by Tom Schouten. creb library is open source and it is
available  at  http://zwizwa.fartit.com/pd/creb/.  Also  it  is
included  into  the  last  PD  extended  versions  (PD  extended
0.39.x).

dwt~ is  an  external  for  PD  which  implement  a
biorthogonal  discrete  wavelet  transform  and  idwt~ is  its
inverse version which implements the inverse discrete wavelet
transform. This DWT is implemented by means of the lifting
scheme.

In the next figure (next page) we can look at the dwt~
help  file.  In  the  help  file  we  can  distinguish  the  different
parameters which control the performance of the dwt:

– predict and  update message:  the  predict  message
specify the coefficients of the predict function as well
as  the  filter  coefficients  of  the  factored  decimating
filter related to the predict step (highpass filter). In
the  same  way,  the  update  message  specify  the
coefficients of the update function as well as the filter
coefficients of the factored decimating filter related to
the update step (lowpass filter).
In  the  help  file  we  can see  three  examples  of  this
predict and update message:

– Haar Wavelet
predict 1 0, update 0 0.5

– 1st order Interpolating Wavelet
predict 0.5 0.5, update 0.25 0.25

– 2nd order Interpolating Wavelet
predict -0.0625 0.5625 0.5625 -0.0625, 
update -0.03125 0.28125 0.28125 -0.03125

– mask message: sets the predict mask, and computes
an update mask with the same order. 
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– 1st order Interpolating Wavelet
mask 1 1

– 2nd order Interpolating Wavelet
mask -1 9 9 -1 

– 3rd order Interpolating Wavelet
mask 3 -25 150 150 -25 3 

  
– coef message:  specify half of  the symmetric predict

mask. Instead of set the mask message we can only
specify the half coefficients with the coef message.

– even message:  specify  the  order  of  a  symmetric
interpolating biorthogonal wavelet.
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This messages can be sent to the  dwt~ inlet to control
the performance characteristics before to start it or during the
performance.  The  signal  we  want  to  analyze  is  sent  to  the
dwt~ inlet and the wavelet coefficients from the dwt analysis
will came from the dwt~ outlet. In the help file a simple sine of
frequency 1500 Hz (8*187.5) is analyze by the dwt~ and the

figure 20: dwt~ help file

38



coefficients  of  this  analysis  are  showed  in  the  scope table
(right-up corner).

But the question now is: how the wavelet coefficients are
presented at the dwt~ output?

In order to ask this question we can take a look at the
next figure:

 

This scheme represent the output of the dwt~ for a input
signal  of  16 samples (which has 4 levels).  The first  sample
store  the value of  the lowest  level  average (that is  the DC
component of the signal). The next samples store the values of
the details coefficients in a dyadic alternative way. We can look
that every odd samples store the differences for level 3 (the
highest  level)  while  even  samples  alternate   the  difference
level  which store.  The difference for  the lowest level (d0) is
always in the central sample.

Now  we  have  an  overview  about  how  the  discrete
wavelet transform works and how we can performance the dwt
in PD. In the next chapter I will try to use this dwt for an audio
analysis  and  resynthesis  by  means  of  an  additive  wavelet
streams.

figure 21: dwt~ output coefficients distribution 
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Chapter 2

Wavelet Stream Additive Resynthesis

In  this  chapter  I  will  introduce  a  process  of  audio
resynthesis by means of a wavelet stream additive synthesis.

2.1.Wavelet Stream Additive Resynthesis

In the last chapter I have seen how wavelet analysis can
decompose  a  signal  into  a  multirresolution  matrix  of
coefficients.  It  is  easy  to  think  that,  if  we  make  some
modifications  in  this  matrix  and  then  we  apply  the  inverse
wavelet transform to this manipulated coefficients matrix, we
will obtain a modified version of the original input signal. This
audio manipulations in the wavelet domain allow us to make in
an easy way audio modifications which are really difficult to
make in the temporal or frequencial domain.

Moreover  we  can  look  at  the  wavelet  transform  from
another  point  of  view.  We can think in the inverse  wavelet
transform as a kind of granular synthesis. 

Granular  synthesis  is  an  audio  synthesis  method  that
operates  on  the  microsound  time  scale.  The  concept  of
granular synthesis come from the ideas of the physicist Dennis
Gabor of an organization of music into "corpuscles of sound".
It is based on the production of a high density of small acoustic
events called 'grains' that are less than 50 ms in duration and
typically in the range of 10-30 ms. By varying the waveform,
envelope, duration, spatial position, and density of the grains
many different sounds can be produced.  

As well as additive synthesis create rich sounds adding
single  sine  waves  of  different  frequencies  and  envelopes,
granular synthesis is able to create complex sounds textures
adding different grain streams (which can be very complex on
its own).
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In this way, we can think in wavelet waveform as grains
and  each  wavelet  decomposition  level  as  streams  which
constitute  a  granular  wavelet  synthesis.  Therefore  wavelet
analysis coefficients can be used as amplitude factors for each
wavelet waveform into this scheme and instead of recompose
the signal  using the classical  inverse wavelet  transform,  we
can use an additive synthesis of wavelet streams to recover
the input signal.    

We are going to summarize this process in general lines:

1. DWT Analysis:  the  dwt  is  performed to  obtain
the  multirresolution  matrix  of  wavelet  analysis
coefficients from the input signal.

2. Wavelet coefficients matrix split: it is necessary
to split the wavelet analysis coefficients matrix
into vectors of coefficients for each levels. This
vectors will be used as amplitude factors vectors
in  each  stream  generation  for  wavelet  grains
windowing.

3. Wavelet streams generation: a wavelet stream is
created for each wavelet level; that is a temporal
succession  of  wavelet  waveforms windowed by
its related wavelet analysis coefficient.

figure 22: Granular synthesis as a additive synthesis of streams
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4. Wavelet  streams  addition:  the  input  signal  is
recovered from a synchronous sum of different
levels wavelet streams.

A  graphic  explanation  of  this  process  is  shown at  the
graphic in the next page:
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figure 23: Wavelet stream additive resynthesis scheme 
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This implementation of the inverse wavelet transform by
means  of  an  audio  signal  processing  instead  of  classic
decimating filter banks or lifting scheme allow us to manipulate
audio directly in the same way we can manipulate audio grains
in granular synthesis. Thus we can recover any sound from its
set  of  wavelet  analysis  coefficients,  or  we  can  modify  this
sound  by  two  kind  of  manipulations:  modifications  in  the
wavelet analysis coefficients matrix (data manipulations) or in
the  wavelet  streams  generation  (audio  manipulations).  Both
modifications can be performed in real time.

Obviously, this implementation means processing a big
amount of data (thousand of ''wavelet grains'') in a microsound
time scale as well as granular synthesis process a big amount
of sound grains. 

2.2. PD implementation of a Wavelet Stream Additive
Resynthesis

The pd implementation of the scheme explained in the
last section looks like that:
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That  is  the  main  patch  that  contains  the  parameter
controls  and  all  the  subpatches  which  performances  the
different  functions.  This  implementation  allow  us  to  load  a
sound file  (*.wav) which is  analyzed and recovered in real-
time using the wavelet stream additive synthesis scheme. This
analysis  and  resynthesis  are  performed  by  blocks  of  2048
samples  because  would  be  impossible  to  performance  the
analysis and resynthesis of the whole sound file. Therefore, the
whole analysis / resynthesis process is performed each block
(each 2048 samples).  We will  know why this value of 2048
samples is chosen during the next explanation.

We  are  going  to  explain  this  implementation  step  by
step:

2.2.1.Initializations

This subpatch contain the initializations we need before
to  start  the  analysis  and  resynthesis.  Contain  another  four
subpatches:  init,  index2level,  window_generator and
wavelet_generator.

– init:  the  necessary  parameters  before  the
performance are initialized: sr_khz set the samplerate

figure 24: main patch
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in kHz,  on_bang send a bang to another subpatches
after  this  loadbang  (due  to  execution  orders),  pd
compute audio is switched on by sending 1 to pd dsp,
main  screen  parameters  are  initialized  (gain,
wavelet_type,  nblocks and  duration)  and  the
dwtcoef table is resized to 2048 samples (block size).

– index2level:  this  subpatch  create  an  index2level
table  which  relate  the  dwt  coefficients  table  index
which its related level. Levels are named in that way: 

– level  0:  coarser  average  s00   (DC  component;  1
sample)

– level  1:  highest  frequency  difference  dj-1 (1024
samples)

– level 2: difference dj-2 (512 samples)
– level 3: difference dj-3 (256 samples)
– level 4: difference dj-4 (128 samples)
– level 5: difference dj-5 (64 samples)
– level 6: difference dj-6 (32 samples)
– level 7: difference dj-7 (16 samples)
– level 8: difference dj-8 (8 samples)
– level 9: difference dj-9 (4 samples)
– level 10: difference dj-10 (2 samples)
– level 11: lowest frequency difference dj-11 (1 sample)

figure 25: init subpatch
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There  are
only  11

levels because of the block size of 2048 samples (log2

(2048)  =  11).  Each  level  cover  a  octave  band
frequency with center frequencies from 22050 Hz at
level 1 to 21.53 Hz at level 11 (fc = 44100/2level; a
samplerate of 44100 Hz is supposed). Levels higher
than level 11 are not necessaries because they cover
frequencies under 20 Hz, so a number of eleven levels
is  enough  and  we  can  use  a  block  size  of  2048
samples. 

The table index2level stores the level  value of
each index in the way dwt~ external  distribute the
coefficients of each level at its output (take a look at
figure 21). This table will be read to obtain the level
number from index coefficient number and to store it
into a message together with the coefficient value.

In this implementation a level counter from 0 to
11 is triggered using the abstraction  until_counter

figure 26: index2level subpatch

48



(faster  and more efficient than a classic pd counter
scheme because it  uses  until looping mechanism).
For  each  level  another  counter  is  triggered.  This
counter gives the number of samples of current level
(end value). This value is modified by jump and init
values  to  obtain  the  indexes  (samples  number)
related with the current level. A C-like code allow us a
better understanding of this process:
 

for (i=0; i<12; i++)
{
level = i;
init  = 2^(i-1);
jump  = 2^i;
end   = 2^(11-i); 
for (j=0; j<end; j++)

{
sample = init + (j * jump);
}

}

sample is the index value of  index2level table and
level is the level value stored in the table.  

– window_generator:  this  subpatch  contain  several
window abstractions  (for  different  levels).  window
abstraction generate a hanning window for a specified
level (stored in table $1_window, where $1 is the level
number). The size of the window depend of the level
number (size = 7 * 2level). There are only nine window
generators,  from level  3  to  11.  That  is  due to  the
number of wavelet streams, what will be explained in
the granulator section. 
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– wavelet_generator:  this  subpatch  contain  several
wavelet abstractions  (for  different  levels).  wavelet
abstraction  generate  a  wavelet  waveform  for  a
specified  level  and  wavelet  type.  This  wavelet
waveform is stored in table $1_wavelet, where $1 is
the level number.  In order  to generate the wavelet
transform we apply the method shown in figure 19,
which lie in put an impulse into the idwt. 
When  on_bang is  received,  an  impulse  is  stored  in
table $1_impulse, wavelet table is resize in the same
way window table is resized (size = 7 * 2level), and a
local  block  size  (level  blocksize)  $1_blocksize is
generated  (this  block size  depend on  current  level,
$1_blocksize   =  8  *  2level).  After  to  generate  local
block size,  $1_impulse  is  set into idwt to generate
$1_wavelet.

figure 27: window abstraction
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Now, we have generated and initialized all parameters
and  tables  we  need  (control  parameters,  index2level
table,  windows  tables  and  wavelets  tables)  before  to
load our file and to start the performance
 

2.2.2.DWT Analysis

This subpatch allow us to load the sound file and to start
its dwt analysis. 

figure 28: wavelet abstraction
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Loaded sound file is stored in  input table. Then, when
we press analysis the whole process of analysis / resynthesis
starts.  input table is read and sent to  dwt~ which stores its
output  in  dwtcoef table.  This  table  is  written  each  2048
samples (equivalent to 0.046 msg if samplerate is 44100). In
order to achieve this,  switch~ object is set to 2048 samples
and overlap of 1 (switch~ object set the processing block size,
overlap and down/up-sampling, and allow us to switch DSP on
and off).  When the sound file  reading process  has finished,
switch~ object is switched off and off_bang value is triggered.

2.2.3.Coefficients list

During  the  performance  this  subpatch  create  a  two
values  messages  stream.  bang~ object  trigger  the
until_counter object each 2048 samples (the specified block
size) when the analysis process starts. This counter count from
0 to 2047 at the beginning of each block. The counter act as
index to read index2level and dwtcoef tables. Thus, the level
and coefficient value of each sample is sent in a message at
the output of this subpatch. Therefore, each bang~ time (at
the  beginning  of  each  block)  2048  messages  with  the
structure [level, coefficient value] are sent.  

figure 29: dwt_analysis subpatch
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2.2.4.Granulator

This  subpatch  contain  several  stream~ abstractions
which  receive  the  coefficient  messages  from
coefficient_list subpatch and generate the wavelet stream
for  each  level.  This  streams  are  added  to  the  granulator
output.

There are nine stream~ abstractions which generate nine
wavelet streams from level 3 to 11. First at all, we are going to
show how this abstraction works.

figure 30: coefficients_list subpatch
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The abstraction stream~ starts  to  work  when analysis
value  switch  on  the  switch~  object  (that  is  when  the
performance starts). In its input it receive the messages from
coefficient_list subpatch.  The  level  value  from  this
message is tested and if this level value is equal to the stream
level, the coefficient value from that message is stored into an
empty  message.  This  message  stores  all  coefficients  of  the
stream level at each block. This values will be the amplitude
factors  of  each  wavelet  waveform in  this  stream at  current
block.

At  each  local  bang~ (each  stream~ abstraction  has  a
different bang and block time which depend on its level) this
block coefficients message is sent to the  list –  list split
scheme and then it is cleared to receive the new coefficients
value  of  next  block.  list object  stores  a  list  and  append
consecutive  lists.  Then,  list  split object  split  the  list,
obtaining the first list value at the left outlet (because we use a

figure 31: stream~ abstraction
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split point of one) and the remaining ones at the middle outlet.
This  remaining  list  is  sent  again  to  list object  creating  a
dropping mechanism. Each local  bang~ a coefficient from the
block coefficients message is sent. This coefficient multiply the
current window which multiply the current wavelet, scaling the
wavelet waveform based on this analysis coefficient value. 

This  process  is  really  important  because  we  need  a
perfect synchronization between the given coefficient and the
current performance time and we are working in a microtime
scale.  Each  coefficient  must  to  be  related  with  its  correct
wavelet. For example, at stream~ abstraction of level three we
have to receive 256 coefficients per block (256 coefficients =
blocksize  /  2level   =  2048  /  23).  So  we  have  to  trigger  a
coefficient each 8 samples (2048 / 256 = 8). In order to allow
it we use a block size of 64 (8 * 23) with an overlap of 8 which
means to obtain a coefficient each 8 samples (23). 

In PD block size of 64 samples is the default block size,
and the minimum too. It is impossible to process with a block
size less than 64 samples. That means the previous example
(stream~ abstraction of level three) is the highest frequency
stream  we  can  generate  (5512  Hz).  Streams  of  higher
frequency  are  impossible  to  obtain  because  we  need  a
blocksize less than 64 samples to achieve it. 

2.2.5.Output

This subpatch simply send the audio signal we obtain to
digital-analog converter in order to listen it.
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Chapter 3

Audio Manipulations in Wavelet Domain

In this chapter I will explain how we can modify audio in
the wavelet domain with PD. 

3.1.Audio Manipulations in Wavelet Domain and its PD
   Implementation

As we explain in Chapter 1, dwt~ external for PD allow
us to obtain a dwt analysis coefficient matrix  which we can
modify before to 
put it into idwt~ external to recover the original sound. With
this purpose I have implemented a PD patch which allow us
different  audio  manipulations.  This  is  the  appearance  of  its
controls main screen:

We can see similar controls than the patch shown in the

figure 32: main patch, controls section
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previous chapter: a load file button, a gain control, a wavelet
type  selector,  duration,  nsamples  and  nblocks  information.
Moreover we can choose between load a sound file with sound
file button or to use a live signal connected to our input audio
device (activating live signal toggle). Because of the possibility
of use a live signal a signal level vumeter is added. Clicking on
pd modifications box (above load file and live signal buttons)
we open another screen which contains all controls for audio
manipulation:

Instead of commenting this audio modifications controls
now, we are going to explain how this patch works in order to
obtain a better understanding of this process. We can take a
look at the program section at main patch:

figure 33: modifcations control patch
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The  three  subpatches  on  the  up-left  corner  (pd
loadfile,  pd live_signal, and  pd dwt_analysis) generate
the selected audio input and make its dwt analysis. The two
subpatches  under  the  previous  ones  (pd dwt_resynthesis,
out_volume~)  performance  the  idwt  from  the  modified
coefficients  list  and  play  the  output  sound.  The  three
subpatches  on  the  right  (pd  list_generator,  pd
split_levels and pd data_modifications) manage the dwt
analysis coefficients and manipulate it in order to modify the
input sound. At the bottom of the screen are the initializations
subptches  and  the  tables  which  show the  input  and  output
waveforms.

We are going to explain individually each of this process.

3.1.1.Audio input and dwt analysis

We can choose between to load a sound file (*.wav) or
to use a live signal connected to our input audio device (we
need to configure audio settings in pd on order to select the
right device).

If we press load_file button we can select a *.wav file
which is stored in soundfile table  (we can take a look at its
waveform by clicking on  table soundfile). When we press
on_bang this sound file is played and the analysis starts. We

figure 34: main patch, program section
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can stop this process by clicking on off_bang. We can take a
look of this subpatch implementation on next figure:

When we click on  live_signal toggle  the signal  from
adc~ (analog-digital converter object, which obtain the audio
signal  from  selected  input  audio  device)  is  sent  to  the
dwt_analysis  subpatch  instead  of  the  load  file  signal.  Next
figure show this live_signal subpatch implementation:

figure 35: load_file subpatch
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Selected
audio signal (sound file or live signal) is sent to dwt_analysis
subpatch  which  performances  the  discrete  wavelet  analysis.
Analysis coefficients are stored into  dwtcoef table each 2048
samples  (block  size  =  2048).  We  can  select  which  type  of
wavelet transform we want (haar, 2nd, 3rd, 4th, 5th or 6th order
interpolation).  on_bang starts the analysis and off_bang stop
it. That is the subpatch implementation:

figure 36: live_signal subpatch

figure 37: dwt_analysis subpatch
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3.1.2.Coefficients manipulations

Wavelet analysis coefficients are stored in dwtcoef table
and we need to manage it and manipulate it in order to obtain
different audio modifications.

The first  step is  to create a message stream with the
analysis coefficient value and its related level and index. This is
the purpose of 
list_generator subpatch of which implementation is shown
on next figure:

Each  block_bang (that means at the beginning of each
block) until_counter abstraction act as index counting from 0
to 2047 which allow to read tables index2level and dwtcoef
(index2level  is created in the same way and with the same
purpose than in previous chapter). This tables provide the level

figure 38: list_generator subpatch
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and  analysis  coefficient  of  each  index  respectively.
index_counter gives an index number from 0 to 2047 each
bang which is modified by pitch value.

This  three  values  are  stored  in  a  message  with  this
order: [level, index, coefficient]. Each block_bang one of this
message is sent to the subpatch outlet.

This messages are received by  split_levels subpatch
which route each message depending on its level. From this
point  messages  of  different  levels  have  an  independently
proces:

This  independently  process  is  made  by  a
modification_level abstraction.

figure 39: split_levels subpatch
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Messages  of  each  level  are  processed  by  its  related
modification_level abstraction. This abstraction modify the
analysis  coefficient  value  which is  multiply  by the output of
randomization abstraction (a random number generator with
an  specified  range  and  frequency  of  generation)  and  by  a
$1_level (a  level  factor  from  equalization  controls).  This
modified coefficient is put again into a message with its related
index. 

All modified messages from different levels are sent to
write_coef abstraction  which  writes  again  this  coefficients
into a new table call idwtcoef table:

The index which control  the writing of coefficients into

figure 40: modification_level
abstraction

figure 41: write_coef abstraction
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idwtcoef table  is  multiply  by  a  time_stretch value  which
come from the stretch control in modifications subpatch.

3.1.3.Resynthesis and output sound

Now, we have a new table which contains the modified
analysis coefficients for each block. This idwtcoef table is read
each block and it is sent to  idwt~ object which performance
the inverse discrete wavelet transform and recover an audio
signal from this table. 

At the output of  idwt~ object we receive the modified
audio signal which is visualize in outputsignal table and sent
to out_volume~ abstraction which allow us to listen this audio
and control its volume.

3.2.Audio Modifications

We have explained how to create a PD patch for audio
manipulations  in  wavelet  domain.  Now,  we  are  going to  go
more into details of this audio modifications.

In  figure  xx  we  have  seen  the  modifications  control
screen, which have four different modifications: stretch, pitch,

figure 42: dwt_resynthesis subpatch
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equalization  and  randomization.  We  are  going  to  comment
each of this modifications separately. 

3.2.1.Stretch

This effect have not to be confused with a time-stretch.
The  name  ''stretch''  for  this  modification  is  due  to  the
stretching of the resynthesis block size. The stretch control has
5 values: 0.125, 0.25, 0.5, 1 (value by default), 2 and 4. The
selected value multiply the block size in resynthesis process
(dwt_resynthesis  subpatch).  Thus,  stretch  values  higher
than one uses a higher block size in resynthesis process (4096
or 8192), while values lower than one uses a smaller block size
(1024, 512 or 256). One value keep the same block size than
in analysis process (2048).

The meaning of  this  modification is  a big distortion of
sound frequencial  spectrum which consist of  low frequencies
suppression  in  stretch  values  lower  than  one  and  high
frequencies  suppression  in  stretch  values  higher  than  one.
Moreover,  this  process  generates  an  apparition  of  some
harmonics in spectrum related with block size. In next figure
we can compare both spectrum of original signal and spectrum
of this signal processed with a stretch value of 0.125 (blocksize
/ 8):
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In  this  figure,  red  line  show  original  signal  spectrum
(original signal is a 10 seconds white noise), while blue line
represent  the  modified  signal  spectrum  (stretch  value  =
0.125). We can look how the lowest frequencies are reduced in
the  modified  signal  (frequencies  lower  than  150  Hz),  while
significant peaks appear at specific points in spectrum (172,
344, 516, 689, 861, 1033 and 1205 Hz). The first point at 172
Hz is directly related with current block size of 256 samples
(2048 / 8): samplerate / blocksize = 44100 / 256 = 172. This
first harmonic is related with a discontinuity each 256 samples
due to this block size. Successive harmonics are separated 172
Hz in a kind of modulation process. The same principle which
creates  this  harmonics  is  perceived  as  a  beating  for  high
stretch values (specially with a value of four). This is due to
the block sizes and its related frequencies (44100 / 4096 =
10.7 Hz, and 44100 / 8096 = 5.3 Hz). This frequencies are so
low that are perceived as a fast beat instead of a frequency
component (this frequencies are below the human perception
frequency range). 

figure 43: original and modified signals spectrum 
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This process produces a big sound distortion with a kind
of pitch shift perception. If we modify a human voice sound
with stretch values higher than 1 we can listen a very deep,
low tone voice sound which is intelligible with stretch value of
2  but  difficultly  understandable  with  value  of  4.  The  same
human voice sound processed with stretch value lower than 1
is unintelligible, higher pitched and scattered. 

3.2.2.Shift

As well as the previous modification, this effect must not
to be confused with a pitch shift. The shift word is referred to a
process of analysis  coefficient shift.  At messages generation
process, an index value is generated from a counter to related
the  current  coefficient  with  its  time  position  and  frequency
level. The shift value is added to this index value, in order to
relate time-level position of current coefficient with shift value.
This  value  don’t  make a simple  time shift  or  pitch  shift  on
current  coefficient.  Instead  of  this,  the  effect  of  shift  value
depend on its numeric value. If we use an odd shift value, for
example one, all coefficients will be related with next wavelet
waveform,  which  means a  big  distortion  because coefficient
C1,0  will envelope wavelet related to coefficient C2,0, coefficient
C2,0  will envelope wavelet related to coefficient C1,1, coefficient
C1,1 will envelope wavelet related to coefficient C3,0, etc.

If  we  use  an  even  shift  value,  for  example  two,  all
coefficients are shifted two positions, which means a time shift
for level one (because level one is stored in all even samples)
and a time and level shift for another levels.

figure 44: shift = 1
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We can listen how different is the distortion produced by
an odd shift value with regard to an even shift value.

3.2.3. Equalization

The equalization controls looks as a typical octave band
graphic equalizer:

 
In  order  to  implement this  equalizer,  wavelet  analysis

figure 45: shift = 2

figure 46: equalization controls
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coefficients  for  each  level  are  multiplied  by  its  related
frequency band gain. Each level cover an octave band with the
specified central frequency. Numeric value of each frequency
band equalization are not dB gain values, instead of that, they
are  multiplication  values:  for  example,  one  value  doesn’t
amplify its band, two value multiply by two its band gain (+3
dBs), and 0.5 value divide by two its band gain (-3 dBs).

3.2.4. Randomization

This  effect  allow us to randomize  audio output  with a
specified randomization range and frequency. We can take a
look to randomization controls in the next figure:

69



Randomization controls are independent for each level;
we can select a different randomization range and frequency
for different frequency bands, or we can randomize only one
frequency band.  Randomization parameters  are  applied only
when we switch on the  on/off randomization toggle. If this
toggle is switched off,  randomization is not applied. We can
reset  randomization  values  by  means  of  clicking  on  reset
bottom. Values by default are 0 for frequency, which could be
between 0 and 1000 Hz, and 20 for  range,  which could be
between 5 and 80. 

randomization abstraction  is  inside
modification_level abstraction.  We  can  take  a  look  to

figure 47: randomization controls
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randomization abstraction in the next figure:

When random_toggle (on/off toggle) is switched on, a
random generator  generate  a  number  between 0  and 1000
each  2  msg.  This  number  is  evaluated  with  moses function
depending on  the  current  frequency value  ($1_freq).  Only
random numbers lower than current  frequency value are put
at the left outlet of moses function. That means the higher the
frequency value, the higher the frequency of random numbers
generation.  This  random  numbers  set  a  bang  for  another
number generator between 0 and randomization  range value
($1_range). The random number we obtain is scaled to set it
in  a   desired  range  to  multiply  it  by  the  current  wavelet
analysis  coefficient.  Thus,  we  can  apply  a  randomization  of
wavelet  analysis  coefficients  which  means  an  audio
randomization for each level or frequency band. 

figure 48: randomization abstraction
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Chapter 4

Conclusions and Future Research

This  work  have  tried  to  create  a  new  kind  of  audio
resynthesis by means of additive wavelet streams. The result
of  this  resynthesis  process  has  not  been  suitable  in  its  PD
implementation,  due  to  its  limitation  to  generate  high
frequency  wavelet  streams.  This  lost  of  high  frequencies
(above 5 KHz)  doesn’t  allow us to obtain an original  signal
perfect reconstruction. Because of this, audio manipulation in
this analysis-resynthesis process have not been implemented.
Future  researches  could  try  to  achieve  a  perfect  signal

reconstruction  by  means  of  this  wavelet  additive  stream
resynthesis  with  a  different  implementation.  Maybe  an
implementation  of  this  scheme  on  a  DSP could  offer  better
results. The idea and theory of this wavelet analysis – additive
wavelet stream resynthesis process have been presented here
to allow a future deeper research on its possibilities in audio
modification and as a different approach to granular synthesis,
which could be focused in computer music purposes.

Possibilities of audio manipulations by means of wavelet
analysis  –  resynthesis  with  Pure  Data  have  been  shown  in
order to expand the audio processing tools with PD. Wavelet
transform and audio processing in wavelet  domain have not
been used frequently in PD, although that could be a powerful
and  interesting  tool  for  audio  processing.  I  hope  this  work
encourages more people to approach wavelet processing with
PD.
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